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How can material structure modulate
cellular function for therapeutic purposes?
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Can we tune material
structure to modulate
fibrosis?




Fibrosis: Fibroblasts Activated by
Aberrant Mechanical Tension and TGF[3
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High Aspect Ratio Features Provide Anti-fibrotic
Signals
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Kam, et. al, Nanoletters 2013; Tissue Engineering 2014 U(‘SF



Long aspect ratio structures inhibit
fibroblast activation in vitro
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Allen, Ryu et al., 2016



Long Structures Decrease Fibrotic
Response in VIvVo
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Nanorod fabrication scheme
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Zamecnik et al., ACS Nano 2017.



Nanowires alter cellular morphology and

actin cytoskeleton
DAPI Nanowires Merge
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Nanowires decrease TGF{ and collagen
transcription

RTqPCR
" B No nanowires + TGF
2.5
® [.ow nanowires + TGF
2 - m High nanowires + TGF
&1 5
e
=
@)
el
S 1 -
o
0.5 -
0 -

TGFbeta TBRII COIl1




Can we use
“nanostructure” to enhance
Immunotherapy?




Systemic Cytokine Therapy

Features vs. Challenges
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Strategy

Tailored Immune
Response

(ytgleted debrery

Applicable to

many cytokine

Longer
half life
targets

cduced side

effects

Endogenous cytokine capture for prolonged
& localized immune activation




Nanostructures as an injectable
cytokine trap
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Zamecnik et al., ACS Nano 2017.



Nanowires can conjugate to IgG species
and sequester cytokines
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Nanowires persist in vivo for >6 weeks

2 week 4 week




Can we use this strategy to activate T cells
specifically and locally?
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Nature Reviews | Immunology

Sprent et al., 2012 U%F



S4B6 antibody-conjugated wires locally

activate NK andd CD8 Cells In vivo
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JES6-1-NWs locally activate Tregs and
Inhibit Teffs in the skin
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JESG6-1 NWs have little effect in the draining

lymph nodes
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Disease Model —=K5-TGO-D0O11
Autoimmune Skin Disease

« K5-TGO-DO11 transgenic mouse .,
that exhibits antigen specific
Immune response to OVA '

Mean clinical score

« OVA under control of tetracycline
promotor in keratinocytes,

>t _— — —— @
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Days after antigen induction

 Leads to acute dermatitis and -
influx of CD4’s into the skin

Hypothesis — local augmentation of
Treg activation before antigen is .
turned on will ameliorate disease
phenotype

Rosenblum e a/, Nature, 2011




Ab-NWs selectively activate antigen specific
Tregs - but not effector cells - In the skin
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Decreased epithelial hyperplasia and
myeloid infiltrate observed in vivo

No Treatment (Blank wires)




“Nanostructured” implants for improved
wound healing: Stents and Vascular Grafts

Control

46626:Cr 10.0kV 4.6mm x60.0k SE 2 3 500 +3606:Cr 5.0kV 10.3mm x10.0k SE_2/26/2013

\
EHT = 5,00 kV Signal A = SE2
WD = 8.7 mm Mag= 68X fw-

Lee et al, Nanoletters 2014; ACS Biomaterial Science, 2016




Injected Microstructures preserve and
Improve cardiac output after Ml
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Harnessing micro- and nano-
topographical cues for therapy
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Characterizing mechanics of fibers

a. Short b. Long c. 14
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Nanoindentation:
* 1590 N/m for short versus 750 N/m for long microfibers (** p < 0.01, n = 12)

« constant prescribed displacement rate of 10 nm/s

with Julia Greer at Caltech



